2017 年度日本政府（文部科学省）奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT（MONBUKAGAKUSHO）SCHOLARSHIPS 2017

学科試験 問題
EXAMINATION QUESTIONS
（学部留学生）
UNDERGRADUATE STUDENTS

数 学（B）
MATHEMATICS（B）

注意 な試験時間は 60 分。
PLEASE NOTE：THE TEST PERIOD IS 60 MINUTES

MATHEMATICS (B)
(2017)

| Nationality | | | |
| :---: | :--- | :--- | :--- | :--- |
| Name | (Please print full name, underlining family name) | Marks | |
| Namen | | | |

Answer the following questions and fill in your responses in the corresponding boxes on the answer sheet.

1. Fill in the blanks with the correct numbers.
(1) $\log _{10} \frac{4}{5}+2 \log _{10} 5 \sqrt{5}=\square$.
(2) The set of all solutions of the inequality $2 \cos x-\sqrt{3}<0$ with $0 \leq x<2 \pi$ is the interval (1) $\pi<x<\square^{(2)} \pi$.
(3) If $\sqrt{2-2 a}=a$, then $a=\square$.
(4) The line through two points $(-1,0),(0, t)$ intersects with the unit circle $x^{2}+y^{2}=1$ in one point (a, b) away from the point $(-1,0)$.

Then, $a=$

(5) $\sum_{k=0}^{10}\binom{10}{k}=\square$, where $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.
(6) Let x, y, z be natural numbers with $x<y<z$. If $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$, then $(x, y, z)=\left(\begin{array}{l}(1), ~(2) \\ \\ \hline\end{array}\right.$
2. Suppose that the parabola $y=x^{2}$ and a line l have two intersection points $\left(a, a^{2}\right)$ and $\left(b, b^{2}\right)(a<b)$. Fill in the blanks with the answers to the following questions.
(1) Let S be the area of the region bounded by the parabola $y=x^{2}$ and the line l. Express S in terms of a and b.
(2) When the line l is perpendicular to the tangent line to the parabola $y=x^{2}$ at the point $\left(b, b^{2}\right)$, express a in terms of b.
(3) When the condition in (2) holds, calculate the minimum m of the area S, and the value of b at which S attains its minimum m.
(1) $S=$

(2) $a=$ \square
(3) $m=$
(1)
$b={ }^{2}$
3. Consider the solid body B formed by the intersection of the two cylinders $x^{2}+z^{2} \leq r^{2}, y^{2}+z^{2} \leq r^{2}(r>0)$ in $x y z$-space. Fill in the blanks with the answers to the following questions.
(1) Express the area of the cross section of B cut by the plane $z=t$ $(-r \leq t \leq r)$ in terms of r, t.
(2) Express the volume of B in terms of r.
(1) \square
(2)

