2017 年度日本政府(文部科学省)奨学金留学生選考試験 QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2017

学科試験 問題 EXAMINATION QUESTIONS

(高等専門学校留学生) NATIONAL INSTITUTE OF TECHNOLOGY STUDENTS

物理 PHYSICS

注意 ☆試験時間は60分

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES

Nationality		No.			
Name	(Please print full name	e, under fam	lining ily name.)	Marks	

1. As shown in the figure, blocks A (mass of 3.0 kg), B (mass of 8.0 kg), C (mass of 9.0 kg), and D (mass of 5.0 kg) are connected using massless strings 1, 2, and 3. When block D is pulled with a horizontal force F of 20 N, answer the following three questions. All answers must be given under two significant figures. Ignore the friction forces between the blocks and the floor.

(1) Find the acceleration a of the system (blocks A~D).

PHYSICS

(1)	m/s ²
-----	------------------

(2) Find the tension T_2 on string 2 (between block B and block C).

(2) N

(3) Find the tension T_3 on string 3 (between block C and block D).

(3)		Ν

- 2. Answer the following two questions about dynamical equilibrium. Use the gravitational acceleration g [m/s²] if necessary.
- (1) As shown in the figure, two identical massless springs (spring constant of k [N/m] and original length of L [m]) and an object (mass of m [kg]) are connected in a straight line between a floor and a ceiling. When the object is in dynamical equilibrium, derive the distance x [m] from the floor. Ignore the size of the object.

(2) As shown in the figure, an object (mass of m [kg]) is hanging from a massless string fixed on the ceiling of an elevator. When the object is in dynamical equilibrium in the elevator moving up with an acceleration of a [m/s²], derive the tension T [N] on the string.

(2)	[N]
-----	-----

3. As shown in the figure, object A (mass of 3M [kg]) and object B (mass of M [kg]) are horizontally moving in the completely opposite direction, with speeds of 2V [m/s] and V[m/s], respectively. Derive the speeds of the two objects after a collision of them, and choose the best one among (A) ~ (F) and write the letter ((A) ~ (F)) of your choice. The coefficient of restitution in the collision is *e*. Ignore the friction forces between the objects and the floor.

$V_{\rm A};$	
<i>V</i> _B ;	

- **4.** Answer the following four questions. All answers must be given under two significant figures.
- (1) Water (mass of 300 g) is in a cup with a mass of 400 g. Their initial Celsius temperature is 20 °C. An object with a mass of 200 g and a Celsius temperature of 95 °C is then put into the cup. Find the Celsius temperature of water when they (the cup, water, and the object) are all in thermal equilibrium. Use 2.0 J/(g•K), 4.2 J/(g•K), and 0.90 J/(g•K) for the specific heat capacities of the cup, water, and the object, respectively. Ignore any other objects outside the system.

(1) °C

(2) There is an ideal gas with an absolute temperature T_1 of 300 K, a volume V_1 of 3.0×10^{-2} m³, and a pressure p_1 of 1.0×10^5 Pa. Then, the ideal gas is heated and compressed. Find the pressure p_2 [Pa] of the ideal gas when the absolute temperature and volume of the ideal gas become $T_2 = 400$ K and $V_2 = 2.5 \times 10^{-2}$ m³, respectively.

(2)	Pa
-----	----

(3) A gas with a volume V_1 of 2.0×10^{-2} m³ and a pressure p of 1.0×10^5 Pa is in a cylinder. The gas is compressed while keeping the pressure constant, and then the volume of the gas becomes $V_2 = 1.6 \times 10^{-2}$ m³. Under the process, find the work W [J] which is given to the gas from the outside.

(3)		J

(4) There is an ideal gas of 2.0 mole monoatomic molecules. The initial Celsius temperature, volume, and pressure of the ideal gas are $t_1 = 27$ °C, $V_1 = 9.0 \times 10^{-2}$ m³, and $p = 1.0 \times 10^5$ Pa, respectively. Then, a heat $Q = 1.0 \times 10^4$ J is given to the ideal gas while keeping the pressure constant. Find the volume V_2 [m³] when the Celsius temperature of the ideal gas becomes $t_2 = 227$ °C. Use the gas constant *R* of 8.3 J/(mol•K) if necessary.

(4)	m ³
-----	----------------

5. As shown in the figure, point charges $q_{\rm B} = 2.0 \times 10^{-6}$ C and $q_{\rm D} = 2.0 \times 10^{-6}$ C are at the corner B and D, respectively, of square ABCD with a length of a side of 3.0 m. Answer the following three questions under two significant figures. Use the Coulomb's law constant $k_{\rm e}$ of 9.0×10^9 N·m²/C² and $\sqrt{2} = 1.41$ if necessary.

(1) Find the magnitude $F_{\rm B}$ [N] of the force on $q_{\rm B}$.

(2) Find the magnitude $E_{\rm C}[{\rm N/C}]$ and the direction of the electric field at the corner C. For the direction, choose the best one among (a) ~ (f) in the following figure and write the letter ((a) ~ (f)) of your choice.

(3) Find the potential $\varphi_{C}[V]$ at the corner C. Let the potential to be 0 at infinity.

(3) V

6. As shown in the figure, a circuit is made using a battery (voltage E = 7.0 V), four resistors ($R_1 = 1.0 \Omega$, $R_2 = 4.0 \Omega$, $R_3 = 2.0 \Omega$, and $R_4 = 3.0 \Omega$), and switch S. Answer the following three questions under two significant figures.

(1) Find the current I_3 [A] in resister R_{3} , with switch S open.

(1)	Α
-----	---

(2) Find the current I_2 [A] in resister R_{2} , with switch S open.

(3) Find the current I_2 [A] in resister R_2 , with switch S closed.

(3)			Α
-----	--	--	---

7. A medium at x [m] position with a displacement y [m] in time t [s] causes a wave given as

$$y(x,t) = 3\cos\{\frac{\pi}{12}(12t-5x)\}.$$

Answer the following three questions regarding this wave. All answers must be given under two significant figures.

Г

(1) Find the speed v [m/s] of the wave.

(1)	m/s
-----	-----

(2) Find the period T[s] of the wave.

(2)		S

(3) Find the wavelength λ [m] of the wave.

(3)			m	
-----	--	--	---	--